RESOLUÇÃO DA LISTA 2 DE GEOMETRIA ANALÍTICA. - Atividades de Matemática

Atividades de Matemática

Atividades de Matemática para Imprimir

RESOLUÇÃO DA LISTA 2 DE GEOMETRIA ANALÍTICA.

Compartilhe

Exercícios de Matemática


Exercícios resolvidos de geometria analítica ensino médio pdf

Geometria Analítica Exercícios resolvidos


ATIVIDADES MATEMATICA
Geometria Analítica Exercícios resolvidos

Geometria Analítica Exercícios resolvidos

Geometria Analítica Exercícios resolvidos

Geometria Analítica Exercícios resolvidos

Geometria Analítica Exercícios resolvidos

Geometria Analítica Exercícios resolvidos

Geometria Analítica Exercícios resolvidos

Geometria Analítica Exercícios resolvidos

Geometria Analítica Exercícios resolvidos

📕 LISTA DE EXERCÍCIOS GEOMETRIA ANALÍTICA PDF 📚

Lista 2 - Geometria Analítica
1. Universidade Federal do ABC Geometria Analítica – Profa. Cecília Chirenti Lista 2 – Dependência Linear e Bases 1 Se possível, desenhe. Se impossível, explique por quê. (a) ( ⃗ ) ( ⃗⃗ ) (⃗ ⃗⃗ ) ������ ⃗⃗ ������ ������ ������ ������ ⃗ ������ ⃗⃗ ������ ⃗ (b) ( ⃗ ) ( ⃗⃗ ) (⃗ ⃗⃗ ) Considerando que as duas primeiras condições são verdadeiras e que dois vetores são sempre coplanares, ⃗ e ⃗⃗ estão no mesmo plano, portanto o conjunto dos três vetores não pode ser linearmente independente. (c) ( ⃗ ) ( ⃗ ⃗⃗ ) ( ⃗⃗ ) Admitindo as duas primeiras condições como verdadeiras, a terceira é impossível, pois os vetores ⃗ e ⃗⃗ são paralelos. (d) ( ⃗ ) ( ⃗ ⃗⃗ ) ( ⃗⃗ ) ������ ������ ⃗⃗ ������ ������ ⃗ ������ ⃗⃗ ������ ⃗ 2 Verdadeiro ou falso. Explique. (a) ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ implica que A, B e C são colineares. Falso, conforme contraexemplo abaixo. A C B Resolvido por: Rodrigo Thiago Passos Silva Bacharelando em Ciência e Tecnologia
2. (b) Se os 4 pontos A, B, C e D são não coplanares, então os vetores ⃗⃗⃗⃗⃗ e ⃗⃗⃗⃗⃗ também são não coplanares. Verdadeiro, conforme ilustração abaixo. θ D D B λ α C A γ Nota-se que ⃗⃗⃗⃗⃗ e ⃗⃗⃗⃗⃗ são não-coplanares. 3 Sendo ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗ , prove que ⃗⃗⃗⃗⃗ , ⃗⃗⃗⃗⃗ e ⃗⃗⃗⃗⃗ são ld para qualquer O. ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗ (⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ) (⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ) ⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ O vetor ⃗⃗⃗⃗⃗ pôde ser escrito como combinação linear de ⃗⃗⃗⃗⃗ e ⃗⃗⃗⃗⃗ , portanto {⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ } é linearmente dependente para qualquer ponto O. 4 Dados os vetores ⃗⃗⃗⃗⃗ , ⃗⃗⃗⃗⃗ ⃗ e ⃗⃗⃗⃗⃗ tais que ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗ , prove que os vetores , ⃗ e são ld. ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗ (⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ) (⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ) ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗ ⃗ ⃗ ⃗ Logo, { ⃗ } é ld. 5 Sejam ⃗ , ⃗ e ⃗ três vetores quaisquer, ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ e ⃗⃗⃗ ⃗ ⃗ . Prove que ⃗ , ⃗ e ⃗⃗⃗ são ld. Resolvido por: Rodrigo Thiago Passos Silva Bacharelando em Ciência e Tecnologia
3. Sendo , ⃗ e vetores ld, são também coplanares, portanto os vetores resultantes ⃗ , , ⃗⃗ são também coplanares e ld. Sendo , ⃗ e vetores li, podem formar a base ( ⃗ ). Logo, ⃗ ( ) ( ) ⃗⃗ ( ) | | *⃗ ⃗⃗ + 6 Sejam O, A, B e C quatro pontos tais que ⃗⃗⃗⃗⃗ ⃗ , ⃗⃗⃗⃗⃗ ⃗ e ⃗⃗⃗⃗⃗ ⃗ . Sendo os vetores e ⃗ li, determine m para que os vetores ⃗⃗⃗⃗⃗ e ⃗⃗⃗⃗⃗ sejam ld. Ilustre o problema com um desenho. ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗ ⃗ ( )⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗ ⃗ ( )⃗ ⃗⃗⃗⃗⃗ e ⃗⃗⃗⃗⃗ são paralelos se, e somente se, existir tal que ( )⃗ [ ( )⃗ ] ( )⃗ ( )⃗ A igualdade é verdadeira se ( ) ( ) Substituindo a primeira igualdade na segunda: ( ) A ⃗ ������ ������ O B C 7 No ΔABC temos ⃗⃗⃗⃗⃗ ⃗ , ⃗⃗⃗⃗⃗ , ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ e ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ . Determine para que ⃗⃗⃗⃗⃗ fique paralelo ao vetor ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ . C P Q A B i) ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗ ii) ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗ ⃗ ⃗ Resolvido por: Rodrigo Thiago Passos Silva Bacharelando em Ciência e Tecnologia
4. iii) ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ Mas, ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ Logo, ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗ ( ⃗) ( )⃗ ( ) iv) ⃗⃗⃗⃗⃗ deve ser paralelo a ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ , logo ( )⃗ . / deve ser paralelo à ⃗ , então deve existir tal que: ( )⃗ ( ) [⃗ ] Resolvendo a igualdade, obtém-se o sistema de equações: ( ) ÷ ( ) Para que ⃗⃗⃗⃗⃗ fique paralelo a ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ , . 8 Dados os vetores ( ), ⃗ ( ) e ( ), escreva o vetor ( ) como combinação linear de , ⃗ e . ⃗ ( ) ( ) ( ) ( ) ( ) ( ) ( ) Logo, e . Portanto: ⃗ 9 É possível escrever (0,0,1) como combinação linear de (1,2,1), (1,0,1) e (1,1,1)? Se quatro vetores de V³ são sempre ld, como interpretar a resposta anterior? ( ) ( ) ( ) ( ) Resolvido por: Rodrigo Thiago Passos Silva Bacharelando em Ciência e Tecnologia
5. ( ) ( ) O sistema é impossível, portanto não é possível escrever (0,0,1) como combinação linear de (1,2,1), (1,0,1) e (1,1,1). Para que os quatro vetores sejam ld, a igualdade ( ) ( ) ( ) ( ) ⃗ deve ser verificada, de forma que os coeficientes reais a, b ,c e g não sejam simultaneamente nulos. Como o primeiro vetor não é combinação linear dos demais e é sabido que quatro vetores são sempre ld, então o coeficiente g é nulo. Com g = 0, a igualdade verificar-se- á. 10 Os vetores ⃗ ( )e ( ) são paralelos. Determine as coordenadas de ⃗ . Se ⃗ e são paralelos a razão entre suas coordenadas e igual, portanto são válidas as igualdades Resolvendo a primeira igualdade, temos: Tomando a = 4 e resolvendo a segunda desigualdade: ( ) Tomando a = 1 e resolvendo a segunda desigualdade: ⁄ Para e ⁄ ,⃗ . /e ( ). Logo, ⃗ ( ) 11 ⃗⃗⃗⃗⃗ ( ) ⃗⃗⃗⃗⃗ ( ) ⃗⃗⃗⃗⃗ ( ). Determine y e z sabendo que C pertence à reta AB. B O ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ( ) ( ) ( ) C ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ( ) ( ) ( ) A Resolvido por: Rodrigo Thiago Passos Silva Bacharelando em Ciência e Tecnologia
6. ⃗⃗⃗⃗⃗ e ⃗⃗⃗⃗⃗ são paralelos, portanto a razão entre suas coordenadas é constante. Logo, Primeira igualdade: Segunda igualdade: 12 Sejam ⃗ ( ), ( ) e ⃗⃗ ( ) Mostre que (⃗ ⃗⃗ ) é uma base de V³, independentemente do valor de m. | | ( ) ( ) (⃗ ⃗⃗ ) é uma base em V³ se, e somente se, . não possui zeros, portanto, , então ( ⃗ ⃗⃗ ) é sempre um conjunto de vetores linearmente independentes. 13 Seja (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ) uma base. Sejam ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ , ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ e ⃗⃗⃗ ⃗⃗⃗ . (a) Mostre que (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ) também é uma base. | | Portanto, (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ) é li e F uma base. (b) Resolva ( ) ( ) . ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ) (⃗⃗⃗ ⃗⃗⃗ ) ( ⃗⃗⃗ ) ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ Logo, ( ) ( ) . (c) Determine na base F as coordenadas de ( ) , - ( ) ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ Resolvido por: Rodrigo Thiago Passos Silva Bacharelando em Ciência e Tecnologia
7. (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ) (⃗⃗⃗ ⃗⃗⃗ ) ( ⃗⃗⃗ ) ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ( )⃗⃗⃗ ( )⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ (I) (II) (III) (I) em (II): (IV) (I) e (IV) em (III) Resposta: ( ) . / 14 Seja (⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ) uma base de V³. (a) Demonstre que (⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ), com ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ , ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ , ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ , é uma base em V³. | | Portanto, (⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ) é li e C uma base. (b) Se ( ) , quais são as coordenadas de na base C? Do enunciado de (a), temos: ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ Então, a matriz de mudança de base de B para C é: ( ) Para calcular o vetor na base C será necessário calcular antes a matriz ( ) . O cálculo será realizado em etapas: i) | | Resolvido por: Rodrigo Thiago Passos Silva Bacharelando em Ciência e Tecnologia
8. ii) ( ) iii) ( ) ( ) iv) ( ) ( ) ( ) Tendo calculado a matriz inversa é possível encontrar o vetor na base C. , - , - ⁄ ( ) ( ) ⁄ ( ⁄ ) ( ) ( ) Resposta: ( ) (c) Se ⃗ ( ) , quais as coordenadas de ⃗ na base B? [⃗ ] [⃗ ] [⃗ ] ( ) ( ) ( ) ( ) Reposta: ( ) 15 Dadas as bases E = ((-1,1,0)B,(1,1,2)B, (-1,0 1)B) e F = ((0,1,1)E, (1,2,-1)E, (2,-1,0)E), determine na base B as coordenadas de ( ) ( ) . ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ( ) ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ( ) ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ( ) ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ( ) ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ( ) ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ( ) Resolvido por: Rodrigo Thiago Passos Silva Bacharelando em Ciência e Tecnologia
9. i) Escrevendo o vetor ( ) na base B: ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ( ⃗⃗⃗ ⃗⃗⃗⃗ ) (⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ) ( ⃗⃗⃗ ⃗⃗⃗⃗ ) ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ( ) ii) Escrevendo o vetor ( ) na base E: ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ (⃗⃗⃗ ⃗⃗⃗ ) ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ( ) iii) Escrevendo o vetor ( ) na base B: ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ( ⃗⃗⃗ ⃗⃗⃗⃗ ) (⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ) ( ⃗⃗⃗ ⃗⃗⃗⃗ ) ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ( ) Resposta: ( ) ( ) ( ) ( ) ( ) Resolvido por: Rodrigo Thiago Passos Silva Bacharelando em Ciência e Tecnologia

Apostila de matemática PDF

Nenhum comentário:

Postar um comentário